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A theorem on stability of steady motions of mechanical systems of specified type, 
is proved. The theorem is then used to investigate the stability of uniform rota- 
tions of a rigid body with a fixed point, about a principal axis containing the cen- 
ter of mass. We introduce an extended parametric space and define in this space 
a domain G of admissible parameter values. It is proved that ~f~rn circular 
motions are stable in the subregion 6 c: G, in which the necessary conditions 
of stability are satlsfled, except a certain set of dimensi~ that is smaller by one 
than the dimension of the extended parametric space, A geome~i~l description 
of the domains G and Gi is given for the case when two moments of inertia are 
equal 

The stability of the motions in question was studied by Rumiantsev [l], who 
obtained the sufficient conditions of stability using the Chetaev method to con- 
struct the Liapunov function in the form of a bundle of integrals of the equations 
of perturbed motion, As follows from [Z-4], the sufficient conditions established 
in this manner, with the values of the parameters characterizing the rigid body 
being arbitrary, become necessary in the integrable cases of Euler, Lagrange and 
Kowalewska. In the nonintegrable oases, they no longer carry such a complete 
information about the character of the motion. It appears that the sufficient con- 
ditions of stability obtained in [l] become the necessary conditions only for the 
rotaions about the longest and the middle principal axis when the center of mass 
is below the support point. In the remaining cases these conditions either partly 
coincide, or the sufficient conditions are completely absent. This follows from 
the fact that in the neighborhood of the steady motions, the Hamiltonian of the 
reduced system needs not be a sign-definite function. Use of the Arnol’d’s theo- 
rem (see [53) to study a similar situation in the mechanical system with ignora- 
ble coordinates the reduced system of which is two-dimensional, makes it possi- 
ble to prove a theorem on stability of steady motions of such systems. We use this 
theorem to extend considerably the region of stability of nniform rotations. 

1. Strbflity of tterdy motions, Let us consider the steady motions of a 
mechanical system with m + 2 degrees of freedom and m ignorable coordinates. If 
canonical variables are used as the phase coordinates, then under the stability of a steady 
motion we shall understand, as usual, the Liapunov stability of this motion relative to all 
impulses and nonignorable coordinates ql and Qs. We can always assume that the steady 
motion in question corresponds to the point P with coordinates 

gr = 0, qe& = 0, p1 = 0, pg = 0, p*+n = CR0 tn = 1, . . ., m) (1.1) 

Theorem 1, Let the Hamiltouian @ be an analytic function of eoordiantes and 
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impulses at the point P, and let the Hamiltonian Ii” of the reduced system satisfy the 
following conditions at this point: 

A. The eigenvalues of the linear reduced system are pure-imaginary and are 
f ice, and f ias’. 

B. The condition kror* + &%” # 0 holds for all integers kr and & satisfying 
the inequality 1 kl I + 1 k2 1 \( 4 . 

c. D” = - (pll”u2”2 - 281, ‘%‘%’ -I- 8za”%02> # 0, where j&p0 are the 
coefficients of the fourth order form of the Haniltonian H”,written in the following 
manner : 

jy"&g_R,_t i pt -R&4-+0,, R, = Ewz + qv2 

U=l %F=l 

where 0, is a power series with terms of at least fifth order. Then the steady motion 
(1.1) is Liapunov stable. 

Proof. The proof of this theorem essentially depends on the sign of the product 
010~20. When cz10020 > 0 , the Liapunov stability of the steady motion with a fixed 
co (CEO, . . ., cm’) follows from the positive definiteness of Ha. This enables us to ap- 
ply the Routh theorem with the Liapunov complement [S], and to state that the motion 
is stable also when co is not fixed. 

For a,“crs” ( 0 we base the proof on the Mozer’s proof [5f of the Arnol’d’s theorem 
with the complement given in p]. First we note that by virtue of the analytic character 
of H at the point P and of the condition uIOaso # 0 , the frequencies al and as are 
analytic functions of the cyclic constants c at point co 

(1.2) 

+ i -gg- (CT - c,“) (cp - cpC) + * - *, i=1,2 
r,p=1 7, P 

(here and in the following the partial derivatives in the corresponding expansions are 
taken at the point co). Therefore the conditions A and B of the theorem hold on the 
set f (: - co I< e Cl.31 

where 1 x 1 is the Euclidean norm of the vector x and e is a sufficiently small number. 
Consequently, for all c belonging to (1.3) there exists a Birkhoff transformation {Sjwhich 
reduces the Hamiltonian H to the form 

(1.4) 

Since the functions defining this ~a~f~rnat~on are dependent analytically on the coef- 
ficients of the initial Hamiltonian, then pVp are analytic functions of c at the point 6’ 

svp= P:,=~~r~(c?++ ***9 v, P-i, 2 0.5) 

and from the fact that the transformation is nondegenerate. it follows that the stability 
of the solution (1.1) is equivalent to the stability of the solution 

h = 0, Es = 0, 71% = 0, ?js = 0, pj+s = Cj", i = $3 2* * * *I * (Lf9 
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of the system 
d4i arr dq, aH dpj+a 
-= -- 
dt aqi ’ dt = x ’ 

- = 0, 
dt 

where H is given by-( 1.4). 
bet us assume that in the perturbed motion we have 

El = axit % = EYZ, Ps+l = c? 
crs < 1 

Then the equations of perturbed motion assume the form 

dZi 8F dy, c3F 

dt= -air,’ dt=sp 

and admit the integrals 

Cj' = con&, i-1,2 ,...Jm 

i = 1, 2, j=i, 2,. . ., m 

+ ECj' 
G.7) 

(1.81 

dc .’ 
3=0 

dt (1.9) 

(the expressions for a,’ and pVr’ can be obtained from (1.2) and (1.5)). From now on 
we shall omit, for convenience, the primes, We note that 

0 (a”) < Ai9 (1.12) 
for O< a< A-‘, where A is a certain independent of e and given by (1.8) ; this 
follows from the analytic&y of the function H at the point P. 

Let us study the behavior of the trajectories of the perturbed motion on the integral 
manifolds defined by a set of m + 1 constants C and e. We shall show that on these 
manifolds the solutions ~6 (t) and y (t) of the system (l,Q) are uniformly bounded in C 
and c defined by the inequalities 

ICl<lEJ& c2<1 (1.13) 

We now introduce the following new variables Rt and @(), : 

q = V&sin*+, yS = ~cos& 

Let us rewrite the differential equations in these variables 

f% -= 2g= O(e3) 
dt 

0.14) 

Using RI = R and tir = 6, 6, is the independent variables we write, with the help 
of (1, II), the following expression for R, : 
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Rz = @(R, 6,9&c)= -$R-$)+ 

(A, +B,R)E+@~B,R+~)&~+O(~~) 

0.15) 

where A,, A,, B, and B, are functions of C and c bounded in (1.13). The inequal- 

ity Ai2 + As2 + B,2 + B,2 ( M2, where M is a constant, holds in the region de- 
fined by (1.13). and the remainder term 0 ( c3) satisfies the estimate (1.12). where A 

is , in this case, independent of c and C from (1.13). In what follows, the properties 

of the transformations carried out ensure that the remainder terms 0 (e") will satisfy 

the same estimate in the region (1.13). 

For any c from (1.13) and sufficiently small E , the expression (1.15) is positive if 

1 f R < 2. Passing in (1.14) from t to es, we find from (1.14) and (1.15) 

dR a@ 

YE= a8 
- = 0 (E3) (1.16) 

da a@ -= -- 
d% 

‘1’ _ B E _ B2E2 _ 'IoR 

aR=crz” 1 
OLZOQ E2 + 0 (E3J 

Let us integrate (1.16) with the accuracy of up to the terms of the order 0 (8") 

R (2n) = R (0) + O(9) (1.17) 

~(2~)=~(0)+2n~-2n(B,+eB2)s -$$D"R +0(G) 

When D” # 0 , the mapping (1.173 satisfies the conditions of the Moser theorem [5], 

consequently an invariant curve r exists in the annulus 1 < R < 2 on each integral 

manifold defined by c and c from (1.13). The remainder terms in (1.17) are uniform- 
ly bounded in c and c from (1.13), therefore eO > 0 can be found independent of 
C and c and such, that for all E E (0, E,,). and c, c from (1.13) there exists an in- 

variant curve r lying within the annulus e2 < rh2 + El2 < 2e2. From this we con- 

clude that if E,” (0) + q12 (0) < 8, then for any c and c from (1.13) we have 

El” (t) + Via (0 < 2a2 (t>o) (1.18) 

The inequality (1.18) and (1.15) together yield the following estimate : 

Es"(t) + q22(t)< 3 1 $1 e2 (t ho) (1.19) 

The inequalities (1.18) and (1.19) and the last relation of (1.7) together prove the sta- 
bility of the solution (1.6), hence also that of (1. l), Q. E. D, 

Notes. 1”. As follows from the proof, the requirement of analyticity of the Ham- 

iltonian H at the point P which enables us to obtain the uniform upper bound for the 
remainder terms with respect to C and c, can be replaced by another requirement of 
the existence, at the point. P , of continuous fifth order partial derivatives in all argu- 

ments. 
2”. If we assume that r components of the vector c are constructive parameters 

of the mechanical system and the remaining ones are, as before, cyclic constants, then 
Theorem 1 gives sufficient conditions of stability of the steady motions of a mechanical 
system with m - r ignorable coordinates under the parametric perturbations [9] of _ 

constructive parameters. 
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2, Sturdy rotrtiont of l body about it8 prlnciprl rxfr, Theaxes 
about which steady rotations are possible, form a Staude cone within the body [lo]. By 
measuring out along each generatrix the value of the angular velocity with which the 
steady rotation takes place about the generatrix in question, we obtain the direct& If 
the center of mass of the body lies on a principal axis, then one of the branches of the 
directrix coincides with this axis, and the body can rotate about this axis with any angu- 
lar velocity, let us investigate the stability of such motions relative to the projections 
of the angular velocity We, ws and o3 and of the vertical vector Ye, vs and vQon the 
moving axes. 

We shall use the Hamilton equations to describe the motion of the body. Juxtaposing 
the axes of the coordinate system associated with the body and the principal axes of the 
inertia ellipsoid, and introducing the Euler angles in the usual manner, we obta’in the fol- 
lowing expression for the Hamiltonian under the assump~on that the center of mass lies 
on the first principal axis: 

H- & ial f@# - & cos 6) sin q + p8 cos cp sin 612 + (2.1) 

a2 I@4 - pQ COS S) Cos cp - p8 sin 4, sin Q2) f - + fsinqsin@ ““:” 

Here a,, as and a3 are the components of the gyration tensor, and I’ denotes the pro- 
duct of the weight of the body and the projection of the center of mass on the first axis. 

A steady rotation at the angular velocity w about the first principal axis is defined by 
the following values of the variables: 

Pe= 0, pp=o, p+=$ s+, cp=$, 9 = @t + 90 (2.2) 

The case I’ > 0 ( I’ < 0 ) corresponds to the center of mass situated above (below) 
the point of suspension. 

From (2.1) we see that a rigid body with a fixed point represents a mechanical system 
with three degrees of freedom and one ignorable coordinate. The steady motions of this 
system are uniform rotations of the body about the vertical. Investigation of the stability 
of the steady rotations with respect to O~, os, os, vX, % and v, is equivalent to in- 
vestigating the stability of the steady rotations with respect to pa, p-, p+, 6 and cp, 
consequently Theorem 1 is applicable to this problem. The steady motions in question 
are defined by (2.2) and the analysis which follows consists of investigating the Hamil- 
tonian of the reduced system near these motions. 

3. Exponrion of the Ha~iltoni~n llblf I uniform rotation, Assum- 
ing that 

pa = xx’, p, = x2’, 6 = ++?d a! =$+y* 

we find the expansion of the Hamiltonian of the reduced system near the position of equi- 
librium, with the accuracy of up to the fourth order terms in x1’, . . . , y2’ 

H = H, + HP f . . . 

2N, = u~x~*~ + a2jcat2 + (wJ+~ - r) y1‘2 + ita2 - a~) h2 - rl y2” + 
2 (~2 - 4 p4ky2’ + 2alp+fsfyl’ 

2H, = (al - as) x1’Zy2’2 + ulxs’2y1’s t_ 
8alp+S + r 

12 yp -+ 
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4pJ, (al- as) 

:'I dt2'3 + (a2 - 4 PJI~1?il~2Y2' i- 

-$ a1p+x2’ylt3 + 34 (a2 - al) ~2’Ylfihf2 + ‘2 (Q - 4 d52'Yl'Y2' 

Let us pass to the dimensionless variables xl,:~s, g1 and y,, and dimensionless time t 

(& 52)) = V-m (511 G), (I/I’> Y21) - (Yl, !/?), z = t JGQi?j 

In the dimensionless form the equations of motion become 

where a dot (‘1 denotes diffe~ntia~~ with respect to T. The uiang~ar inequalities 
far the moments of inertia define the domain C of variation of the parameters a and 
b. The domain C contains the positive values of n and b and is bounded by the cmves 
a = b (a + l), 2, z= a (b + 1) and a = b (a - 1). It is depicted on Fig. 1. 

4, Nscsrtrry oondftionr of stability, The characteristic equation of the 
linearized system with the function H% has the form 

ke -k QP i- Qs = 0 (4.1) 

Q1 = (2 + UB - a - b) 6P - e (a + b), Q2 = [(a - 1) d - 
eall(b - I) 63 - ebl 

Therefore the necessary conditions of stability are 

Q1 > 0, Qz > 0 (4.2) 

01” - 4Q, = (a + b - ab)2 CO* - 2e (u + b - a@(4 - a - 
b) 632 -/- (a - b)2 > 0 

The above conditions were obtained and analyzed thoroughly in [X3]. Following [ 111 
we also exclude from our discussion the critical cases in which some of the relations in 
(4.2) have the equal sign instead of the inequality sign, 

We write the conditions of ~m~tibili~ of the inequafities (4.2), using the notation 
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adopted above. When e = - 1 , the inequalities (4.2) hold for any values of o , fur 
b > a > 1; if b > 1 > a we have o2 ( a / (1 - a), while if 1 > a > b we 
have &’ < b / (1 - b) or d > a / (1 - a). When e = 1 , we introduce for con- 

3 
2 4 

Fig. 1 

venience the curves II and Ia defined by rhe 
equations 

a = b(2b - 3) I (b - 1)2, 

b = (2~ - 3) / (a -1)~ 

respectively. These lines together with the 
straight lines a = 1, b = 1, a = b divide 
the domain C into 10 subdomains Ci, Ci’ 
(i = 1, . 1 *, 5) (Fig. 1). The necessary con- 
ditions in the domains Ci ’ are obtained from 
the necessary conditions in Ci by replacing 
Q. by b and b by a in the corresponding ine- 
qualities. The domain C, includes the ray 
a = I, b > (vs + 1) / 2 and the segment 
[A, BJ of the curve Ii, the domain C, in- 
cludes the semi-interval (A, KJ of the same 

curve, C, indudes the interval (d , D) and C, includes the semi -interval JE, D). 
We note that on the line a = b we have already established the sufficient conditions 
reflected by the Maievskii criterion, therefore the points lying on this line are not inclu- 
ded in any of the domains I$. Let us give the summary of necessary conditions of sta- 
bility (the relevant domains are indicated in parentheses ) : the rotation is unstable for 
any value of 0 (Cr); 

@lJ2<02<* (Cd; m2 > 00” (G). 
Here 

s_ 4--a--b+2 v(a-2) (b-2) 
*o - a+b-ab 

Notes. 1’. Rumiantsev in [ 1 J used the Chetaev method to study the sufficient 
conditions of stability of the solution (2.2). These are found to be equivalent to the 
conditions of the sign-definiteness of Hz, consequently the problem of behavior of the 
solution (2.2) remains open in the following cases : 

e=-l, i>a>b, aa>+ --a 

e--i b (2b - 3) 
, b> 1, a’ (b - 1)a ’ 

b 
oo2<02<b~ 

and in the domains Cs, C, and C, in which the necessary conditions of stability hold, 
but the function Ha has an alternating sign. 

2’. The case 4 = 1 is considered separately below. In this case, the necessary 
conditions of stability are also sufficient when e = - 1 , while when e = 1 , the suffi- 
cient conditions of stability cannot be obtained by constructing a Liapunov function for 
the integrals of the equations of perturbed motion since the function H* is of constant 
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6, R6duation to normal form, In order to apply Theorem 1, we shall reduce 
the Hamiltonian (3.2) to its normal form, restricting ourselves to the terms of the fourth 
order inclusive, Denoting the roots of the Eq, (4.1) by f iai and rrt ia,, we write the 
following canonical transformation normalizing Ns : 

% = v-J1 + Cl%, Y1 = s,v, + c2v2 

4 = s&i + csv2, $2 = s,u, + c,u, 

s, = a, iala + o2 (a - 1)(1 - 6) + be] w, s2 = l~a,~ + 

+.a2 (1 - a) b + abe] w 

SS = 0 fa12 (a - a) + 0P (a - 1) - ael w, s4 = a,w (ub - 
-a- @ w 
ulw2 = c {[al2 + w2 (a - 1) (1 - b) -f- bel[aa,2 + wa (1 - 

(5.1) 

- a) b + abel + co2 (ab - a - 6) IcQ2 (a - 1) -f- 0.P (1 - a) + ael}-’ 

Here c is an arbitrary constant, The formulas for cl, cs, cs and c, are obrained from 
the expressions for si, s2, ss and s, in which a, are replaced by us. The coefficients 
fill, &s and f122 are equal to the coefficients accom~nyi~g pr2qz2, plqlp2q2 and 
pssqs2 in the form rJp written in terms of the complex variables pl, pa, q1 and pa 
defined by 

Pk = @k + i@k, qk = uk - it& k==l,2 

We obtain 
8~~s~ = 6 (I- af ~12~42 -I- 6S22S22 + 

&2+e s4+ 
2 2 

469 (l- aJ+-e 4 
2 s4 + [Z (a - 1) a2 + e] s&f + 8w (1 - a) s& + 

2 (a - 1) 6x&sQ, + ms~S~ + 40 (a - 1) s&s: + 4 (@ - 1) SlS2SSS4 

&&2 = 2 (1 - a) [(y4 + wkf2 + w,s,s41 + 2 I(w2 + c2%d2 + 

c2c2ss2s,s,l + (802 + e) c22s22 + I402 (1 - a) + el C42S42 + 
I2 (a - 1) w2 + 4 (c*%pg + S2”C4a) + 80 (1 - a) (C,S, + 

SlC4) C4S4 + 20 (U - l)(C,C4S2" + s,s4c22)+~0@c2S2 tc2& + s2c2) + 

463 (a - ~)(c,c$*2 + s,%%2) i- 4 ta - i)(c2c2S~S4 + s2s2clc4) 

The expession for p2s follows from the formula for fill by replacing in the latter Sk 

by ck- 

6. The C&I@ when the momenta crf inertia we equal, Beforeana- 
lyeing the general case of the Namiltonian of the reduced system, we turn our attention 
to the case a = 1 which corresponds to the equality A, = A, (A,, A, and A, are 
the lxincipal moments of inertia relative to the fixed point). Since the necessary con- 
ditions of stability become also sufficient when e = -1 (see Note !A”, Sect.4). weshall 
assume from now on that e = 1. Then the coefficients fike become 

16c& = 12~~~s~~ + 2s&,2 + 2Oos,%, + (802 +. 1) ~4% + s44 (6.1) 

Ici~f3~~ = 12~~~~~~ + 2ca2cp2 + 200c,~c~ + (80~ + 4) cp2 + c,* 
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s, = a, (al” + b) w, %= (al2 -f- b) wp S$ = - ww 

sa = - alww 

c, = cc2 (%” + b) w’, c, = (q + b) w), CQ = - wwr 
&, = - CQWW’ 

u1w2 = c f( U12 + by - wy-1, a$P = c r(cq + by - wq-’ 

c = - 16w-eal%t2a (al2 - cz2a)z (al2 + b) (%a + 6) 

Substituting the formulas (6.1) into the expression for the determinant L>“, we obtain 

D” = (b - 1)sws + 2 (b - l)(b2 + 2b - 5) w* + (6: 2) 

(b - l)(P -j- i3P - 41b + 7) wz + 8 (b4 - 5bs + 5P -/- b + 
2) 02 +4b (b - 1)’ 

From (6.2) we see that the condition C of Theorem 1 is violated only for the certain 
vafues of w, namely for the roots of the equation Do = 0. The points c~es~nding 
to these values of w must be excluded from the domain of stability defined by the ne- 
cessary conditions, since Theorem 1 does not provide a solution to the problem of stabi- 
lity of such steady rotations. Analyzing the equation I)” = 0 we conclude that it has 

3.5 
no real roots when “fs < b < 1 and has not 
more than four real roots when I< b < b* = 
(1 + j&!$/2. Figure 2 depicts the curve S, 
defined by the equation I>’ = 0 in the Obw- 
plane, for the interval r/s \< b < (1 +v!!$ / 2 
(all plots on Fig. 2 are constructed for o > 0, 

2.5 the lines for w ( 0 are obtained by reflect- 
ing the above plots in the Ob -axis). 

Next we determine the steady rotations for 
which the condition B of Theorem 1 doesnot 
hold. The case 1 a, f = 1 a, f was discussed 
in Sect 4, therefore we shall not discuss it any 

2 further and choose the case 1 % 1 > 1 aI 1 
to conclude that the following resonances may 

Fig. 2 appear : 
a, = 2a,, a3 = 3a, (6.3) 

The resonance us = 2a, is not substantial since the expansion (3.2) of H contains no 
Hs -term. The last relation of (6.3) can be written after certain amount of manipula- 
tion,fn the form 

9w4 + 2 (41b - 59) w2 + (92, - 1)(6 - 9) = 0 

and this yields a single posit&e value for ws 

902 = 59 - 41b -+ 10 V’16b2 - 41b + 34 (6.4) 



which is always found to lie within the region of stability. Equation (6,4) defines a cer- 
tain curve S, (Fig, 2) in the Oh -plane, 

To illustrate graphically the results obtained, we shall introduce an extended paramet- 
ric space defined as a straight product of the parametric space of the mechanical sys- 
tem and of the space of cyclic eonstams. In the present case the Obw-plane will serve 
as this space, The restrictions imposed on the moments of inertia separate, on this plane, 
a region G f- oo ( 0 ( 00, f!2 < b ( 03) of admissible parameter values. 
The region (3 - b -t 2l/2 - b < ws < b / (b - I), ‘1, < 0 < (J’-5 + l} / 2) 
in which the necessary conditions of stability hold. shall be denoted by G, (Fig. 2). Then 
the following theorem holds: 

Theorem 2. Let a rigid body with equal momenta of inertia about the first two 
axes rotate uniformly about the first axis which carries the center of mass situatedabove 
the point of suspension. Then the region of stability in the extended parameteric space, 
i, e, on the Obo -plane, is represented by the region Gi with the exclusion of the ct.mes 
3% and 8, Pig. 2). 

7, Ragiont of :trbilfty in the general case. Returning to the general 
case, we can use the results of Sect. 6 to assert that D” $ 0, Then the equation D” (a, 
b, o) = 0 determines a certain surface 8, in the extended parameteric space Oabwc 
Assuming that { aa 1 > 1 a i 1 , we find that the condition B of Theorem 1 is violated 
only when Eqs, (6,3) hold* As we said before, the resonance aa = J&r, is not substantial, 
From the analysis of the case a = 1 it follows that the resonance a2 = 3a, is not ful- 
filled identically, therefore the equation a, = 3a, determines the surface S, in the 
parameter&z space. Thus the conditions L3 and C of Theorem 3 fail only on the surfa- 
ces S, and Ss in the space Oabo. Denoting, as before, the region of the extended 
parameteric space in which the necessary conditions of stability hold (see Sect. 4) by 
Gi, we can formulate the result obtained in the form of - 

Theorem 3. Let a rigid body rotate uniformly about its first axis carrying the cen- 
ter of mass. Then the region of stability in the extended parameteric space Onbw is 
represented by the region G3 with the surfaces fr and S, exclude. 

1. 

2. 

4. 

5. 
6. 

7, 

8. 
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When Liapunov’s direct method is used to study the stability of nonlinear systems 
and attempts are made to construct a Liapunov function with a derivative of con- 
stant sign or sign-definite, serious difficulties often occur. In the present paper a 
method is proposed for studying the stability of autonomous systems wherein use 
is made of an auxiliary function 1’ (x) . The method is not connected with the 
conditions for or (x) and its derivative with respect to time to be of constant sign 
or sign-definite. Instead, the function Y (x) along the trajectories of the system 
under study is required to satisfy a second order linear differential equation and 
certain boundary conditions. A theorem for the existence of the function V (x) 
is proved and an effective method is given for constructing it is the solutionof a 
Dirichlet problem for a degenerate elliptic operator of a special type : this makes 
it possible to obtain ‘v (x) numerically with the help of a computer. The function 
V (x) can be used, not only for the study of stability, but also to determine regions 
of attraction and to obtain the invariant sets of autonomous systems. in particular, 
the limit cycles of second order systems. 

1. We consider the system of equations of a perturbed motion 
x’ = f (x) (1.X) 

defined in some bounded domain D C R”’ and such that f (x) E cc’) (D). Here, 
and in what follows, by 0”) (D) we shall mean the space of functions which have in D 
continuous partial derivatives to order k inclusive, and by flk+aI (D) we shall mean 
the space of functions which have in D partial derivatives of arder k which satisfy a 
H&lder condition with exponent 0 ( a c i. Let 8 = (x : 1 x I\< r} c D, and let 
I: be the boundary of 9. The intrinsic norm in R”’ will be denoted by 1. j , 

We introduce now an auxiliary system of equations for the perturbed motion 

x0 = h (x) (1.2) 
where 


