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A theorem on stability of steady motions of mechanical systems of specified type,
is proved, The theorem is then used to investigate the stability of uniform rota-
tions of a rigid body with a fixed point, about a principal axis containing the cen-
ter of mass, We introduce an extended parametric space and define in this space
a domain ¢ of admissible parameter values, It is proved that uniform circular
motions are stable in the subregion G; C G, in which the necessary conditions

of stability are satisfied, except a certain set of dimension that is smaller by one
than the dimension of the extended parametric space, A geometrical description
of the domains G and G, is given for the case when two moments of inertia are
equal,

The stability of the motions in question was studied by Rumiantsev [1], who
obtained the sufficient conditions of stability using the Chetaev method to con-
struct the Liapunov function in the form of a bundle of integrals of the equations
of perturbed motion, As follows from [2—4], the sufficient conditions established
in this manner, with the values of the parameters characterizing the rigid body
being arbitrary, become necessary in the integrable cases of Euler, Lagrange and
Kowalewska, In the nonintegrable cases, they no longer carry such a complete
information about the character of the motion, It appears that the sufficient con-
ditions of stability obtained in (1] become the necessary conditions only for the
rotaions about the longest and the middle principal axis when the center of mass
is below the support point, In the remaining cases these conditions either partly
coincide, or the sufficient conditions are completely absent, This follows from
the fact that in the neighborhood of the steady motions, the Hamiltonian of the
reduced system needs not be a sign-definite function, Use of the Arnol‘d‘s theo-
rem (see [5]) to study a similar situation in the mechanical system with ignora-
ble coordinates the reduced system of which is two-dimensional, makes it possi-
ble to prove a theorem on stability of steady motions of such systems, We use this
theorem to extend considerably the region of stability of uniform rotations,

1, Stability of steady motions, Let us consider the steady motions of a
mechanical system with m 4 2 degrees of freedom and m ignorable coordinates, If
canonical variables are used as the phase coordinates, then under the stability of a steady
motion we shall understand, as usual, the Liapunov stability of this motion relative to all
impulses and nonignorable coordinates ¢y and ¢;. We can always assume that the steady
motion in question corresponds to the point P with coordinates

G=0,9 =0 p =0, pp =0, pgen =c¢,° (3=1,...,m) (1.1

Theorem 1, Letthe Hamiltonian  be an analytic function of coordiantes and
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impulses at the point P, and let the Hamiltonian H® of the reduced system satisfy the
following conditions at this points

A, The eigenvalues of the linear reduced system are pure-imaginary and are
+ to; and 3 iay.

B. The condition %;0,° + k3@,;° 5= 0 holds for all integers k, and k, satisfying
the inequality [ &y | + | A | <C 4.

Co D° = — (B1°0y’® — 2P12°0,° 0" + Ps”017%) 5= 0, where Py’ are the
coefficients of the fourth order form of the Haniltonian H° written in the following
manner : 2 B

o 2

H= 3R+ 3 S RR.A40;, Ro=t2+un?
yo=1 W, =1

where O, is a power series with terms of at least fifth order, Then the steady motion

{1,1) is Liapunov stable,

Proof, The proof of this theorem essentially depends on the sign of the product
@,°0y°. When @,°a,’ >> 0 , the Liapunov stability of the steady motion with a fixed
¢ (¢, - - -» Cm") follows from the positive definiteness of Ff,. This enables us to ap-
ply the Routh theorem with the Liapunov complement [6], and to state that the motion
is stable also when ¢°is not fixed,

For ,°0,” << 0 we base the proof on the Mozer's proof [5] of the Arnol'd's theorem
with the complement given in [7], First we note that by virtue of the analytic character
of H at the point P and of the condition a,°a,’ # O , the frequencies o, and o, are
analytic functions of the cyclic constants ¢ at point ¢°

m
do.
@ = o (e — )+ .2
r=1 T
m
1 &,
2 2 e 6; er—eNep—ep) + -+ -, i=1,2
T P=xl TP

(here and in the following the partial derivatives in the corresponding expansions are
taken at the point ¢°), Therefore the conditions 4 and B of the theorem hold on the

set ‘c_co‘<8 (1.3)

where | X | is the Euclidean norm of the vector X and ¢ is a sufficiently small number,
Consequently, for all ¢ belonging to (1, 3) there exists a Birkhoff transformation {8]which
reduces the Hamiltonian H to the form

2 2
a4, B
H= 2—-R,+ 2 —“R.R,+ 0, (1.4)
v=1 V==l
Since the functions defining this transformation are dependent analytically on the coef-
ficients of the initial Hamiltonian, then B, are analytic functions of ¢ at the point c’
m
o aB
® . e
B = B = 21 3:, (cr—e)t -y Mp= 1,2 (1.5)
=
and from the fact that the transformation is nondegenerate, it follows that the stability
of the solution (1,1) is equivalent to the stability of the solution
8 =0, 5% =0,1m =0, 1 =0, pjrg =¢° I=12...m (1.6}



Stability of uniform rotations of a rigid body 625

of the system

dE; aH AN, 9H  9Pj, . .
— T —— -~ — =1, 2, =1 2,...,m
di am, ' At o, ' T di 0, i=12 /=,

where H is given by (1,4),
Let us assume that in the perturbed motion we have

Se=s82 MW=y, puy=c + ey 1.m
21 (1. 8)
Then the equations of perturbed motion assume the form
ds __oF W ok ¥ (1,9)
dt dy; ! dt oz, 7 dt
and admit the integrals
¢/ =const, =1, 2,-“-,”* (1.10)
CX
2‘, “*‘ R/RS + 0¥ =c (1.11)
v=1 V=1
o0
“‘“““'*’82 ac 5 E acac o de, et
r._.x r,p=1
’ Q " v
BVl‘:BVP"{-eZ‘-ac—p;cT'i""y Bv’=xvz+y\o2
re=1 r

(the expressions for a,” and B,.’ can be obtained from (1, 2) and (1, 5)), From now on
we shall omit, for convenience, the primes, We note that

O (&%) < 4¢® (1,12)
for O << e<C A7, where 4 isa certain independent of ¢ and given by (1, 8); this
follows from the analyticity of the function H at the point 2,

Let us study the behavior of the trajectories of the perturbed motion on the integral
manifolds defined by a set of m - 1 constants C and ¢. We shall show that on these
manifolds the solutions z (£)and ¥ (£) of the system (1, 9) are uniformly bounded in C
and ¢ defined by the inequalities

[Cl<log]l2, <1 (1.13)
We now introduce the following new variables R; and 4, :
z; =V R, sin 9, y:i=V R cosd
Let us rewrite the differential equations in these variables

dR
: .55— =0 (&) (1.14)

"d_‘}= 288 2(m+ :=E BRy) +10 (&)

Using Ry = Rand €, = 8, 0, is the mdependent variables we write, with the help
of (1, 11), the following expression for R, :
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Ry=®(R, 9, 8,C,0)= — 2L (R— j§)+ (1.15)
(4 + BiB)e -+ (At BLR+ 30 )2 + 0 (e)

where A,, A,, B, and B, are functions of ¢ and ¢ bounded in (1,13), The inequal-
ity A2® + A,%2 4+ B? + B,* << M?, where M is a constant, holds in the region de-
fined by (1,13), and the remainder term O (&3) satisfies the estimate (1,12), where A
is ,in this case, independent of ¢ and C from (1,13), In what follows, the properties
of the transformations carried out ensure that the remainder terms O (2%) will satisfy
the same estimate in the region (1,13),

For any C from (1,13) and sufficiently small & , the expression (1, 15) is positive if
1 << R < 2. Passing in (1, 14) from ¢ to ¥,, we find from (1,14) and (1, 15)

drR _ ® 3
R — 0 (e (1,16)
a9 D - 11° _ 9 __ D°R 2 O 3
2o =~ ok = aw — B — B’ — 5w &+ 0
Let us integrate (1, 16) with the accuracy of up to the terms of the order O (83)
R (2n) = R (0) + O (&?) (1,17)
oy a® 2ne? o
8 (2%) = 9.(0) + 21 > — 20 (B, + eBy) e — 2 D°R + 0 (&)

When D° 5= 0 , the mapping (1, 17) satisfies the conditions of the Mozer theorem [5],
consequently an invariant curve I' exists in the annulus 1 <{ R <{ 2 on each integral
manifold defined by C and ¢ from (1,13), The remainder terms in (1,17) are uniform-
ly bounded in C and ¢ from (1,18), therefore €, >0 can be found independent of

C and ¢ and such, that for all & & (0, &y) and C, e from (1, 13) there exists an in-
variant curve I' lying within the annulus &% < 1% + £, <C 2e%. From this we con-
clude that if &% (0) + m,% (0) <C €%, then for any C and ¢ from (1,13) we have

82 () + M () <28 ¢>0 (1.18)
The inequality (1,18) and (1, 15) together yield the following estimate :

B2 (t) + M2 (1)< 3

The inequalities (1, 18) and (1, 19) and the last relation of (1, 7), together prove the sta-
bility of the solution (1, 6), hence also that of (1, 1), Q,E,D,

Notes, 1°, Asfollows from the proof, the requirement of analyticity of the Ham-
iltonian H at the point P which enables us to obtain the uniform upper bound for the
remainder terms with respect to C and c, can be replaced by another requirement of
the existence, at the point- P, of continuous fifth order partial derivatives in all argu-
ments,

2°, If we assume that r components of the vector ¢ are constructive parameters
of the mechanical system and the remaining ones are, as before, cyclic constants, then
Theorem 1 gives sufficient conditions of stability of the steady motions of a mechanical
system with m — r ignorable coordinates under the parametric perturbations [9] of ~
constructive parameters,

e (1>0) (1.19)

o’
az°
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2, Steady rotations of a body about {ts principal axis, The axes
about which steady rotations are possible, form a Staude cone within the body [10], By
measuring out along each generatrix the value of the angular velocity with which the
steady rotation takes place about the generatrix in question, we obtain the directrix, If
the center of mass of the body lies on a principal axis, then one of the branches of the
directrix coincides with this axis, and the body can rotate about this axis with any angu-
lar velocity, Let us investigate the stability of such motions relative to the projections
of the angular velocity ®,, ®, and w3 and of the vertical vector v, v, and vgon the
moving axes,

We shall use the Hamilton equations to describe the motion of the body. Juxtaposing
the axes of the coordinate system associated with the body and the principal axes of the
inertia ellipsoid, and introducing the Euler angles in the usual manner, we obtain the fol-
lowing expression for the Hamiltonian under the assumption that the center of mass lies
on the first principal axis:

1 . .
= gomag (@1 [(Py — Po cos B) sin @ + pg cos g sin 612 + (2.1)

a3 [(py — Py c0s B) cos ¢ — pg sin @ sin 912 +

+Fsmq>snn1‘}

Here a;, a, and &, are the components of the gyration tensor, and T denotes the pro-
duct of the weight of the body and the projection of the center of mass on the first axis,

A steady rotation at the angular velocity @ about the first principal axis is defined by
the following values of the variables:

ps=0, pe=0, p‘b:_a(%; '&312‘-5 ‘p=_2:iv Y=ot + Yo (2.2)

Thecase ' >0 (T <7 ( ) corresponds to the center of mass situated above (below)
the point of suspension,

From (2.1) we see that a rigid body with a fixed point represents a mechanical system
with three degrees of freedom and one ignorable coordinate, The steady motions of this
system are uniform rotations of the body about the vertical, Investigation of the stability
of the steady rotations with respect to ©;, @y, o, vy, v, and vgis equivalent to in-
vestigating the stability of the steady rotations with respect to ps» Pey Py, ¥ and @,
consequently Theorem 1 is applicable to this problem, The steady motions in question
are defined by (2, 2) and the analysis which follows consists of investigating the Hamil-
tonian of the reduced system near these motions,

3, Expansion of the Hamiltonian near a uniform rotation, Assum-
ing that - x
p¢=.1:1', Pe =2, 'ﬂz"z““f‘yl,a W=‘2‘+yz'
we find the expansion of the Hamiltonian of the reduced system near the position of equi-
librium, with the accuracy of up to the fowth order termsin z,’, . . ., ¥,’

H=H, + H +..
2H, = asr,'? + a32," + (@10 — D) 912 4 [(@e — a)) p® — Tl 922 +
2 (ay — a1) poy'ys” + 2a,P4T:yy
Baip 2+ T o

2H = (@1 — a5) 2%y + 432y, + ——5— 9" -
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dp 2 lar—ag) T 2{me—a)p+T ,
—L‘“‘fr—""-yzu ey

4p, (a1 — az) ,
—q‘““‘:{"“‘“‘ Ty 4 (ay — ay) poy vy e +

5 7 p. r 7
5 QP2 Y1+ 2Py (82 — 1) Ty Yo" - 2 (@a — ay) 212y Yy
Let us pass to the dimensionless variables ,,2,, y; and ¥,, and dimensionless time T

(xy, 2o’y = V] UlVay(xy, z), (31, ¥y = (Y, 4y T=1t a [T
In the dimensionless form the equations of motion become

_ aH .o .o . 8H .1
xl R ayl Y x? - "5:,72—‘ ?/1 - fx1 ¥ y? - Fr . )
H=H,+Hy+--- (3.2)

2H, = ax® + bzg® + (0® — ) y,* + [(@ — 1) 0® —e] y,* -+
2(a — 1) ox,y, + 20z,

2Hy = (1 — a)zy," + &%y)" + —5— il + Syt w__4m a ';a) e ¥t +
2{(a— 2o (1 —
_(‘_1__‘_%_23__4:_* Y17yt -+ <ol 3 x1y2 + (@ — 1) oz Py, +

%wxzyﬁ‘ + 20 (@ — 1) 2ay1¥e® + 2 (@ — 1) 21254192
— 1, I'>0
a2 as a1 !

where a dot (*) denotes differentiation with respect to T, The triangular inequalities
for the moments of inertia define the domain C of variation of the parameters ¢ and

b. The domain C contains the positive values of @ and § and is bounded by the curves
a="b( +1), b=a(b +1) and a = p(a — 1). It is depicted on Fig, 1,

4, Necessary conditions of stability, The characteristic equation ofthe
linearized system with the function H, has the form

M 4 QM Q=0 (4.1)
Q=2 +ab—a—0bw?—ela+b), @=I[~—1o0®—
eall(b — 1) ©* — eb]

Therefore the necessary conditions of stability are

0. >0, >0 (4.2)
Q2 —4Q, =(a +b—ab ot —2(a + b — ab)(b —a —
B) 0 + (a — b2 >0

The above conditions were obtained and analyzed thoroughly in [11], Following [11]
we also exclude from our discussion the critical cases in which some of the relations in
(4. 2) have the equal sign instead of the inequality sign,

We write the conditions of compatibility of the inequalities (4, 2), using the notation
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adopted above, When ¢ = — 1, the inequalities (4, 2) hold for any values of o, for
b>a>1ifb>1">awehave 0><a/(1 — a),whileifl >a > bwe
have 0? << b/ (1 — b) or ®® > a /(1 — q). When e = 1, we introduce for con-
venience the curves /;, and /, defined by the

‘ ;
5 \ k:, O — b(2b—3)/ (b — 1),
_ b= (2 —3)/(a —1)2

. respectively, These lines together with the
Gl 1% ' — straight lines @ = 1, b = {, g = b divide
z ' the domain C into 10 subdomains (;, C;’
16 e (i =1, ..., 9) (Fig. 1), The necessary con-
4 c ditions in the domains C;’ are obtained from
G, the necessary conditions in (; by replacing
aby b and b by a in the corresponding ine-
2 qualities, The dorilain C, includes the ray
z 4 a=1,b> (V5 +1)/2 and the segment
Fig, 1 [4, B] of the curve /;, the domain C, in-
cludes the semi-interval (4, K] of the same
curve, C, includes the interval (4, D) and C; includes the semi-interval [E, D),
We note that on the line ¢ = b we have already established the sufficient conditions
reflected by the Maievskii criterion, therefore the points lying on this line are not inclu-
ded in any of the domains (;. Let us give the summary of necessary conditions of sta-
bility (the relevant domains are indicated in parentheses): the rotation is unstable for
any value of o (C,);

0>t (€ <<, > (G

a—1
0 < 0f < "5‘:5_—1 € @ >0 (Co)

Here S—
_b—a—b4+2V(@—2) (b—2
- a-+b—ab

Notes, 1°, Rumiantsevin [1] used the Chetaev method to study the sufficient
conditions of stability of the solution (2,2), These are found to be equivalent to the
conditions of the sign-definiteness of H,, consequently the problem of behavior of the
solution (2, 2) remains open in the following cases:

0,2

e=—1, 1>a>b, ms>1-%;

= b(2b—3) b
e=1 3>1, o>, 0 <@t <

and in the domains C,, C; and €, in which the necessary conditions of stability hold,
but the function H, has an alternating sign,

2°, The case a = 1 is considered separately below, In this case, the necessary
conditions of stability are also sufficient when ¢ = — 1 ,while when e = 1, the suffi-
cient conditions of stability cannot be obtained by constructing a Liapunov function for
the integrals of the equations of perturbed motion since the function H# is of constant
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sign [12].

5. Reduction to normal form, In order to apply Theorem 1, we shall reduce
the Hamiltonian (3, 2) to its normal form, restricting ourselves to the terms of the fourth
order inclusive, Denoting the roots of the Eq, (4,1) by == i@ and == iy, we write the
following canonical transformation normalizing H, :

Ty = Sy + Cly, Yy =S¥ -+ Gy (5.1)
Zy = Sy -+ Cglyy Y = Sy + Calig

8 = oy (02 + 0?2 (a — )1 — b) + belw, s = laa,® +

+ 0> (1 —a)b + abe]l w

ss=olag?(1 —a) +02(a—1) — aelw, s = g0 (ab —

—a — b) w

aw? = ¢ {{e,®? + 0®(a — 1) (1 — b) + bellae,® + 0 (1 —

—a) b + abel + 0? (ab—a — b) la2 (e — 1) + 0 (1 — a) + ael}™?

Here ¢ is an arbitrary constant, The formulas for ¢;, ¢y, Cg and ¢, are obtained from
the expressions for 8y, S, S3 and §; in which @ are replaced by @,. The coefficients
Bi1» Pyp and P, are equal to the coefficients accompanying p,2q,%, D1g1P2ge and

Pa*q,® in the form 4H, written in terms of the complex variables p,, p,, ¢, and ¢

defined by ) '
pkzuk+lvk) QAzuk—lvk’ k21,2

Rl A B
4@3(1—511)-}-8 4+[z(a_i)m2+e]s§s§+8m(1—a)3134

2 (@ — 1) 05,5384 -+ 1008355 -+ 4o (@ — 1) 558955 + 4 (@ — 1) 152554

8cByy = 2 (1 — a) l{eysy + :960)® + e1cs$5g] + 2 [{cgsy + €285)® +
e€555s) + (807 + ) %% + [40® (1 — a) + €l ces® +
[2(a — 1) 02 + e] (e%® + %% + 8o (1 — a) (184 +
$16q) €8s + 20 (@ — 1)(cregs® + 88,057 +100¢ys, (€85 + 8,€5) +
4o (@ — 1)(cyeass® + 585 + 4 (@ — 1)(cxts18s + S253¢1C4)
The expression for §,, follows from the formula for f§,, by replacing in the latter s,
b)‘ Ch.

We obtain
8cByy = 6 (1 — a) sy%54% + 65,755 + ——-—

6, The case when the moments of {nertia are equal, Before ana-
lyzing the general case of the Hamiltonian of the reduced system, we turn our attention
to the case a = 1 which corresponds to the equality 4, = 4, (4,, 4, and 4, are
the principal moments of inertia relative to the fixed point), Since the necessary con-
ditions of stability become also sufficient when e = —1 (see Note 2°, Sect, 4), weshall
agsume from now on that ¢ == 1, Then the coefficients f,, become

16cBy; = 125,35 + 25,7, 4 20ws8,%; + (80? + 1) s% + st (6.1)

16cByy = 12¢,%c5% + 2¢,%c,% - 200¢,%c5 + (Bw? + 1) ¢ + ¢4t
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16cPys = 2 (45,85C5C5 + S5 + €°5%) + (Bo? + 1)s%c® +
s + cd + ¢ + 100863 (cs% + €s35)

s=o(m? £)w, s= (0 +Hw, 5%=—aw

S4 = - al(l)w
g =a(a? +hw, ¢=(0"4+duw, c=—ow
€y = — W'

e = e (@ 4 D= 017, @’ = (o + by — 02l
¢ = —16o~%a%a,? (0, — @) (0, + b) (0 + b)

Substituting the formulas (6, 1) into the expression for the determinant D°, we obtain

D° = (b~ 1)%° +2(b— 1)(3® + 2b — 5) o (6:2)
(b — 1)(B® 1+ 136 — 41 + 7) @* + 8 (0* — 56% + 562 + b+
2) 02 +4b (b — 1)®

From (6, 2) we see that the condition C. of Theorem 1 is violated only for the certain

values of @, namely for the roots of the equation D° = (). The points corresponding

to these values of @ must be excluded from the domain of stability defined by the ne-

cessary conditions, since Theorem 1 does not provide a solution to the problem of stabi-~

lity of such steady rotations, Analyzing the equation D° = ( we conclude that it has

25 no real roots when /3 < & <{ 1 and has not
« Y

more than four real roots when <o b*=
&, (1 +V'5) /2. Figure 2 depicts the curve S,

defined by the equation D° = 0 in the Obo-

plane, for the interval Y/, < b <<(1+V'5)/2
S, (all plots on Fig, 2 are constructed for © > U,

5
2.5 E! LS the lines for @ < § are obtained by reflect-
M ! ing the above plots in the Qb -axis),
S { Next we determine the steady rotations for
6

which the condition & of Theorem 1 doesnot

hold, The case | o, | = | a; | was discussed
5 in Sect, 4, therefore we shall not discuss it any
Y ] 7 z further and choose the case | Oy l >
to conclude that the following resonances may
Fig, 2 appear:

a, = 20;, a3 =3¢, (6.3)

The resonance @, == 2@, is not substantial since the expansion (3,2) of A contains no
H 4 -term, The last relation of (6, 3) can be written after certain amount of manipula-

ion, in the f
HOm AN Te TOM g 08 1 2 (416 — 59) @2 + (95 — 1)(b — 9) = 0
and this yields a single positive value for o2

902 = 59 — 415 - 10 Y 1662 — 41b - 34 (6.4)
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which is always found to lie within the region of stability, Equation (6, 4) defines a cer-
tain curve .§, (Fig, 2) in the Obw -plane,

To illustrate graphically the results obtained, we shall introduce an extended paramet-
ric space defined as a straight product of the paramewic space of the mechanical sys-
temn and of the space of cyclic constants, In the present case the (bw-plane will serve
as this space, The restrictions imposed on the moments of inertia separate, on this plane,
aregion G (- 00 <l @ <C o0, Y, < b« oo} of admissible parameter values,
Theregion (3 — b + 22 — b 0P<< b/ (b—1), Yo b<< (V5 +1)/2)
in which the necessary conditions of stability hold, shall be denoted by G, (Fig, 2), Then
the following theorem holds

Theorem 2, Let arigid body with equal moments of inertia about the first two
axes rotate uniformly about the first axis which carries the center of mass situated above
the point of suspension, Then the region of stability in the extended parameteric space,
i,e, on the Obw -plane, is represented by the region G, with the exclusion of the curves
S; and §,; (Fig, 2%

7. Regions of stability in the general case, Returning to the general
case, we can use the results of Sect, 6 to assert that D° == (. Then the equation D° (a,
b, ®) = 0 determines a certain surface 5, in the extended parameteric space Ogbw .
Assuming that | @, | >> | o, |, we find that the condition B of Theorem 1 is violated
only when Egs, (6, 3) hold, As we said before, the resonance g, = 2&1 is not substantial,
From the analysis of the case @ = 1 it follows that the resonance o, = 3ay is not ful-
filled identically, therefore the equation @, = Ja, determines the surface §, in the
parameteric space, Thus the conditions B and C of Theorem 1 fail only on the surfa-
ces S, and §, in the space Ogbw. Denoting, as before, the region of the extended
parameteric space in which the necessary conditions of stability hold (see Sect, 4) by
G,, we can formulate the result obtained in the form of —

Theorem 3, Let arigid body rotate uniformly about its first axis carrying the cen-
ter of mass, Then the region of stability in the extended parameteric space Oaba Is
represented by the region @, with the surfaces S; and S, exclude,
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When Lizpunov's direct method is used to study the stability of nonlinear systems
and attempts are made to construct a Liapunov function with a derivative of con-
stant sign or sign-definite, serious difficulties often occur, In the present papera
method is proposed for studying the stability of autonomous systems wherein use
is made of an auxiliary function ¥ (x). The method is not connected with the
conditions for ¥ (x) and its derivative with respect to time to be of constant sign
or sign-definite, Instead, the function V (x) along the mrajectories of the system
under study is required to satisfy a second order linear differential equation and
certain boundary conditions, A theorem for the existence of the function V (x)

is proved and an effective method is given for constructing itis the solutionof a
Dirichlet problem for a degenerate elliptic operator of a special type ; this makes
it possible to obtain V (x) numerically with the help of a computer, The function
V (x) can be used, not only for the study of stability, but also to determine regions
of attraction and to obtain the invariant sets of autonomous systems, in particular,
the limit cycles of second order systems,

1, We consider the system of equations of a perturbed motion
X =1(x) (1.1
defined in some bounded domain D (— R™ and such that f (X) & C® (D). Here,
and in what follows, by C®) (D) we shall mean the space of functions which have in D
continuous partial derivatives to order & inclusive,and by C¥+®) (D) we shall mean
the space of functions which have in D partial derivatives of order & which satisfy a
H8lder condition with exponent 0 << e << f.Let Q = {x:|x|<r} C D,and let
Z be the boundary of Q. The intrinsic norm in R™ will be denoted by |- | .
We introduce now an auxiliary system of equations for the perturbed motion
" = h(x) (1.2)
where



